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Abstract

The first and the second Zagreb eccentricity index of a graph G are defined as
E1(G) =

∑
v∈V (G) εG(v)2 and E2(G) =

∑
uv∈E(G) εG(u)εG(v), respectively, where

εG(v) is the eccentricity of a vertex v. In this paper the invariants E1, E2, and
the Wiener index are compared on graphs with diameter 2, on trees, on a newly
introduced class of universally diametrical graphs, and on Cartesian product graphs.
In particular, if the diameter of a tree T is not too big, then W (T ) ≥ E2(T ) holds,
and if the diameter of T is large, then W (T ) < E1(T ) holds.

1 Introduction

Graphs considered in this paper are finite, undirected, and simple. If G = (V (G), E(G))

is a graph, we will use n(G) = |V (G)| for its order and m(G) = |E(G)| for its size. The

degree degG(v) of v ∈ V (G) is the number of vertices in G adjacent to v. The complement

of G is denoted with G. The eccentricity εG(v) (or ε(v) for short) of a vertex v ∈ V (G) is

the maximum distance from v to the vertices of G, that is, εG(v) = max
u∈V (G)

dG(v, u). The
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eccentric set of v is EccG(v) = {u : dG(v, u) = εG(v)}, cf. [34], and the total eccentricity

of G is ε(G) =
∑

v∈V (G)

εG(v) (see more related results in [14]). The diameter and the radius

of G are diam(G) = max
v∈V (G)

εG(v) and rad(G) = min
v∈V (G)

εG(v), respectively. A graph G is

k-self-centered graph if diam(G) = rad(G) = k.

A graphical invariant is a function from the set of graphs to the reals which is invariant

under graph automorphisms. In chemical graph theory, graphical invariants are most

often referred to as topological indices. Among the oldest topological indices are the well-

known Zagreb indices first introduced in [11], where Gutman and Trinajstić examined

the dependence of total π-electron energy on molecular structure. The work was further

elaborated in [12]. The first Zagreb index M1(G) and the second Zagreb index M2(G) of

a (molecular) graph are defined as

M1(G) =
∑

v∈V (G)

degG(v)2 and M2(G) =
∑

uv∈E(G)

degG(u) degG(v) .

These two classical topological indices reflect the extent of branching of the molecular

carbon-atom skeleton [26]. See [3, 17, 21, 32, 38, 39] for various recent results on Zagreb

indices. In analogy with the first and the second Zagreb index, Vukičević and Graovac [27]

introduced the first and the second Zagreb eccentricity index as

E1(G) =
∑

v∈V (G)

εG(v)2 and E2(G) =
∑

uv∈E(G)

εG(u)εG(v) .

For properties of E1 and E2 see [5,8,24,28]. The important current role of the eccentricity

and its related concepts in mathematical chemistry can be nicely seen from a series of five

related papers published in the monograph [10] dedicated to novel molecular structure

descriptors. Out of these papers we emphasize the long paper [22] dedicated to the role

of eccentricity based descriptors for QSAR/QSPR.

The oldest topological index in chemical graph theory, however, is the Wiener in-

dex [30] (with the multiplicative version of it, see [15]). It is still of very high curren-

t interest, cf. [1, 6, 18–20, 29, 40] and is defined on a connected graph G as W (G) =∑
{u,v}⊆V (G)

dG(u, v). For a vertex v ∈ V (G), the transmission TrG(v) of v is the sum of the

distances from v to other vertices in G, so that

W (G) =
1

2

∑
v∈V (G)

TrG(v) . (1)



Recently, some results were proved on the comparison between the Wiener index and

the total eccentricity of graphs [4], while in [36] the so-called Wiener complexity was

compared with the eccentric complexity. In this paper we continue the research in this

direction by comparing the Wiener index, the first Zagreb eccentricity index, and the

second Zagreb eccentricity index. In the next section we focus on graphs with diameter

2 and prove that in the majority of cases either E1(G) < E2(G) or E1(G) > E2(G) holds

for such graphs G, and classify when one of the two options occurs. In Section 3 we

consider trees, while in Section 4 we introduce and study universally diametrical graphs.

We conclude with two results on Cartesian product graphs.

2 Graphs with diameter 2

Kn is the unique graph of order n and diameter 1. Clearly, E2(Kn) = W (Kn) =
(
n
2

)
>

n = E1(Kn) for n ≥ 3. Hereafter we thus consider the graphs with diameter at least 2, in

this section those with diameter 2. If n ≥ 3, then denote by G2n the set of graphs of order

n with diameter 2. We first compare E1 and E2.

Proposition 2.1. If G is a self-centered, not-complete graph, then E2(G) ≥ E1(G) with

equality holding if and only if G is a cycle.

Proof . Set m = m(G) = m and n = n(G). Clearly, δ(G) ≥ 2 because a pendant vertex

has different eccentricity than its support vertex. Hence

2m =
∑

v∈V (G)

degG(v) ≥ 2n,

that is, m ≥ n. If m = n, then G ∼= Cn in which case E2(G) = n bn
2
c2 = E1(G).

Otherwise, m > n and hence E2(G) = m · ε(G)2 > n · ε(G)2 = E1(G).

For graphs with diameter 2, Proposition 2.1 immediately implies:

Corollary 2.2. If G is a self-centered graph with diam(G) = 2, then E2(G) ≥ E1(G).

Moreover, equality holds if and only if G ∈ {C4, C5}.

To formulate the next result, we need some preparation. A vertex v ∈ V (G) is a

universal vertex if degG(v) = n(G)−1. We will denote with n′(G) the number of universal



vertices of G and with G′ the subgraph of G induced by the non-universal vertices. In

other words, G′ is obtained from G by removing all of its universal vertices. Finally,

denote by avd(G) the average degree of graph G, that is, avd(G) = 2m(G)
n(G)

. Then we have:

Theorem 2.3. Let G be a non-self-centered graph with n(G) ≥ 3 and diam(G) = 2. If (i)

n′(G) ≥ 3, or (ii) n′(G) = 2 and avd(G′) > 0, or (iii) n′(G) = 1 and avd(G′) > 1+ 1
2(n−1) ,

then E1(G) < E2(G). Otherwise, E1(G) > E2(G).

Proof . Set n = n(G), m = m(G), and n′ = n′(G). Then m =
(
n′

2

)
+ n′(n − n′) + x,

where x = m(G′). Consequently, E1(G) = 4(n − n′) + n′ = 4n − 3n′ and E2(G) =(
n′

2

)
+ 2n′(n− n′) + 4x. Then it follows that

E2(G)− E1(G) = 2(n′ − 2)(n− n′) +
n′(n′ − 3)

2
+ 4x. (2)

Since G is a non-self-centered graph with diam(G) = 2, we have n′ ≥ 1. We distinguish

the following three cases on the value of n′.

Suppose first that n′ ≥ 3. Then by (2) we get that E2(G) − E1(G) ≥ 2(n − n′) > 0,

where the last inequality holds because G is not complete and thus n > n′.

Suppose next that n′ = 2. Using (2) we obtain that E2(G) − E1(G) = 4x − 1

and therefore E2(G) > E1(G) provided that avd(G′) = 2x
n−2 > 0. Otherwise we have

E2(G) < E1(G).

Assume next that n′ = 1. Applying (2) again, we get E2(G)−E1(G) = 4x−2n+1 and

(since n′ = 1) also avd(G′) = 2x
n−1 . Therefore E2(G)− E1(G) > 0 if avd(G′) > 1 + 1

2(n−1) .

Otherwise, we have avd(G′) ≤ 1 + 1
2(n−1) . We claim that avd(G′) 6= 1 + 1

2(n−1) . Indeed, if

this would be the case, then we would derive the equality 4m(G′) = 2n− 1, which is not

possible. Clearly, we have E1(G) < E2(G) if avd(G′) < 1 + 1
2(n−1) .

If G ∈ G2n, then dG(u, v) = 2 holds for each non-adjacent vertices u and v, hence the

following result holds immediately.

Proposition 2.4. If n ≥ 3 and G ∈ G2n has m edges, then W (G) = n(n− 1)−m.

Next we compare W with E1 and E2 for the graphs from G2n.

Theorem 2.5. If n ≥ 9 and G ∈ G2n, then W (G) > E1(G).



Proof . Set n′ = n′(G) and m = m(G). Then E1(G) = 4n − 3n′ and m < n(n−1)
2

since

G � Kn. So, by Proposition 2.4, we have

W (G)− E1(G) = n(n− 5)−m+ 3n′

>
n(n− 9)

2
+ 3n′

≥ 0 ,

the last inequality holding by the assumption n ≥ 9.

Since E1(G) = 4n(G) and E2(G) = 4m(G) hold for a self-centered graph G with

diameter 2, Proposition 2.4 yields:

Proposition 2.6. If G is a self-centered graph of order n, size m, and diameter 2, then

the following statements hold.

(i) W (G) > E1(G) if and only if m < n(n− 5).

(ii) W (G) > E2(G) if and only if m < n(n−1)
5

.

In the following we consider non-self-centered graphs G ∈ G2n.

Theorem 2.7. If n ≥ 3 and G ∈ G2n with n′(G) > n−1
2

, then E2(G) > W (G).

Proof . Set n = n(G), m = m(G), and n′ = n′(G). Since n′ > n−1
2

, G is non-self-

centered. As already observed in the proof of Theorem 2.3, m = n′(n − n′) + x +
(
n′

2

)
,

where x = m(G′). Then E2(G) =
(
n′

2

)
+ 2n′(n− n′) + 4x. Moreover, W (G) = n(n− 1)−

n′(n− n′)− x−
(
n′

2

)
by Proposition 2.4. Then it follows that

E2(G)−W (G) = 5x+ 2

(
n′

2

)
+ 3n′(n− n′)− n(n− 1)

= 5x−
[
2n′2 − (3n− 1)n′ + n(n− 1)

]
= 5x− 2(n′ − n)

(
n′ − n− 1

2

)
> 0

for n′ > n−1
2

, completing the argument.

Corollary 2.8. Let G ∈ G2n with 0 < n′(G) ≤ n−1
2

.



(i) If avd(G′) > 2
5
(n− 1− 2n′(G)), then E2(G) > W (G).

(ii) If avd(G′) < 2
5
(n− 1− 2n′(G)), then E2(G) < W (G).

Proof . Set again n′ = n′(G) and x = m(G′). Using the argument from the proof of

Theorem 2.7 we have

E2(G)−W (G) = 5x+ 2

(
n′

2

)
+ 3n′(n− n′)− n(n− 1)

= 5x− 2(n− n′)
(n− 1

2
− n′

)
=

5

2
(n− n′)

[ 2x

n− n′
− 2

5
(n− 1− 2n′)

]
> 0 ,

where the last inequality follows by the assumption avd(G′) = 2x
n−n′ >

2
5
(n− 1− 2n′).

The above argument works also if avd(G′) < 2
5
(n − 1 − 2n′(G)), the difference being

only in the last estimate which becomes less than 0.

We conclude the section with the following construction.

Theorem 2.9. For each integer n′ ∈ (0, n−2], there exists a graph G ∈ G2n with n′(G) = n′

such that E2(G) > W (G).

Proof . If n′ > n−1
2

, the result holds by Theorem 2.7, hence it remains to consider the

cases n′ ∈ (0, n−1
2

]. Let G ∈ G2n and let V ′ be the set of non-universal vertices in G, so that

G′ is the subgraph of G induced by V ′. If avd(G′) > 2
5
(n− 1− 2n′), then E2(G) > W (G)

from Corollary 2.8. Otherwise, avd(G′) ≤ 2
5
(n−1−2n′). Let V ′0 = {v : v ∈ V0, degG′(v) <

n − n′ − 2}. Note that 2
5
(n − 1 − 2n′) < n − n′ − 2 for n > 5. Then ∅ ⊂ V ′0 ⊆ V ′. Now

we construct a graph G∗ obtained by inserting some edges among the vertices in V ′0 such

that G∗[V0] is a graph obtained by removing i ≤ bn−n′
2
c independent edges from Kn−n′ .

Then G∗ ∈ G2n with avd(G∗[V0]) ≥ n − n′ − 2 > 2
5
(n − 1 − 2n′). The result then follows

from Corollary 2.8.

3 Trees

In this section we compare W with E1 and with E2 on the class of trees. The main results

assert that if the diameter of a tree is not too big, then W ≥ E2 and if the diameter of a



tree is large, then W < E1.

Theorem 3.1. If T is a tree with n(T ) ≥ 3 and diam(T ) ≤ 1+
√
4n−3
2

, then E2(T ) ≤ W (T )

with equality holding if and only if T ∼= P3.

Proof . Set n = n(T ) and d = diam(T ). Clearly, εT (v)εT (u) ≤ d(d− 1) holds for an edge

uv ∈ E(T ) with equality holding if and only if one of the vertices u and v is diametrical.

Since d ≤ 1+
√
4n−3
2

, we have d(d − 1) ≤ n − 1. For an edge uv ∈ E(T ) let nu and nv

be the number of vertices closer to u than to v, and closer to v than to u, respectively.

Clearly, nu + nv = n. Recall further the well-known fact going back to Wiener [30] that

W (T ) =
∑

uv∈E(T )

nunv. Hence for any edge uv ∈ E(T ) we have

εT (v)εT (u) ≤ d(d− 1) ≤ n− 1 ≤ nunv ,

which after summing over all the edges of T yields E2(T ) ≤ W (T ). Moreover, the equality

holds if and only all three equalities above hold for each edge uv ∈ E(T ). Equivalently,

each edge uv ∈ E(T ) is a pendant edge in T , and n− 1 = d(d− 1). Only the path P3 of

order 3 has these properties.

We have thus seen that if the diameter of a tree is relatively small, then W ≥ E2. On

the other hand, if the diameter of a tree is large, then W < E1:

Theorem 3.2. If T is a tree with n(T ) > 3 and diam(T ) ≥ 2n
3

, then W (T ) < E1(T ).

Proof . Set n = n(T ), d = diam(T ) and r = rad(T ). Assume that d is even. (The

proof for the case when d is odd is analogous and hence omitted.) Then T has radius

r = d
2

and d > 2 holds because d ≥ 2n
3

and n > 3. From definitions, it suffices to prove

that TrT (v)
2
≤ εT (v)2 holds for each vertex v of T , and that for at least one vertex strict

inequality holds. Let P be a diametrical path in T with y, z as two diametrical vertices.

Then εT (v) = max{dT (v, y), dT (v, z)} for any vertex v ∈ V (T ). Next we bound the value

of TrT (v)
2

for vertices v of T and distinguish three cases.

Suppose first that v is a diametrical vertex in T . Then

TrT (v)

2
≤ 1

2

[
1 + 2 + · · ·+ d+ (n− d− 1)d

]
=

1

2

(
n− d+ 1

2

)
d

< d2 = εT (v)2 ,



where the strict inequality holds because d ≥ 2n
3

.

Suppose next that v is a central vertex in T . (Since d is even, such a verttex is actually

unique.) Then

TrT (v)

2
≤ 1

2

[
2(1 + 2 + · · ·+ r) + (n− 2r − 1)r

]
=

(n− r)r
2

≤ r2 ,

where the last inequality holds since d ≥ 2n
3

and d = 2r.

In the last case assume that v is neither a diametrical nor the central vertex of T .

Then εT (v) = k, where d+2
2
≤ k ≤ d − 1. In the first subcase assume that v lies on P .

Then

TrT (v)

2
≤ 1

2

[
1 + 2 + · · ·+ k + 1 + 2 + · · ·+ d− k + (n− d− 1)k

]
=

1

2

[
(n− d+

k − 1

2
)k +

(d− k + 1)(d− k)

2

]
=

1

2

[
(n− 2d+ k − 1)k +

d2 + d

2

]
.

Thus it follows that

εT (v)2 − TrT (v)

2
≥ k2 − 1

2

[
(n− 2d+ k − 1)k +

d2 + d

2

]
=

1

2

[
k2 + (1 + 2d− n)k − d2 + d

2

]
≥ 1

2

[d+ 2

2
(
d+ 2

2
+ 1 + 2d− n)− d2 + d

2

]
≥ 3d+ 4

4
> 0

for k ≥ d+2
2

with d ≥ 2n
3

, that is, n ≤ 3d
2

.

In the second subcase assume that v is not a vertex of P . Let u be the vertex of P

closest to v. Clearly, u 6= y, z. Let dT (y, v) = k. Then we get dT (u, y) = k − x and

dT (u, z) = d− k + x ≤ k − x which implies that 1 ≤ x ≤ k − d
2
. Then

TrT (v) ≤ 1 + 2 + · · ·+ k + x+ 1 + · · ·+ x+ d− k + x+ (n− d− 1− x)k

=
k(k + 1)

2
+

(d− k + 2x)(d− k + 2x+ 1)

2
− x(x+ 1)

2
+ (n− d− 1− x)k

= k2 +
d2 + d

2
+ 2x(d− k) +

3x2 + x

2
+ (n− 2d− 1− x)k ,



which gives

2εT (v)2 − TrT (v) ≥ k2 + (2d+ 1− n)k − d2 + d

2
− x(2d− 3k)− 3x2 + x

2
. (3)

Consider the function

h(x) = x(2d− 3k) +
3x2 + x

2

defined for x ∈ [1, k − d
2
]. Then we have h′(x) = 2d− 3k + 6x+1

2
which implies that h(x)

is an increasing function on x ≥ k − 2d
3
− 1

6
and a decreasing function on x ≤ k − 2d

3
− 1

6
.

Now we determine the maximum value of h(x).

Case 1 : k ≥ 2d
3

+ 1
6
. In this case

h(x) ≤ max

{
h(1), h

(
k − d

2

)}
.

One can easily see that

h(1) = 2d− 3k + 2 ≤
(
k − d

2

)(
2d− 3k +

3
(
k − d

2

)
+ 1

2

)
= h

(
k − d

2

)
as k ≥ d

2
+ 1. Thus we have

h(x) ≤
(
k − d

2

)(
2d− 3k +

3
(
k − d

2

)
+ 1

2

)
=
(
k − d

2

)(5d

4
− 3k

2
+

1

2

)
.

Case 2 : d
2

+ 1 ≤ k < 2d
3

+ 1
6
. In this case we have

h(x) ≤ h
(
k − d

2

)
=
(
k − d

2

)(5d

4
− 3k

2
+

1

2

)
.

From (3), we obtain

2εT (v)2 − TrT (v) ≥ k2 + (2d+ 1− n)k − d2 + d

2
−
(
k − d

2

)(5d

4
− 3k

2
+

1

2

)
=

5k2

2
− nk +

k

2
+
d2

8
− d

4
. (4)

Note that k ≥ d
2

+ 1 ≥ n
3

+ 1 as d ≥ 2n
3

. Since n ≤ 3d
2

, we have that g(x) = 5x2

2
− nx+ x

2

is a strictly increasing function on x ≥ d
2
. From (3), we have

2εT (v)2 − TrT (v) > g

(
d

2

)
+
d2

8
− d

4
=

5d2

8
− nd

2
+
d2

8
=
d(3d− 2n)

4
≥ 0,

which implies εT (v)2 > TrT (v)
2

.



We conclude the section with the following result.

Theorem 3.3. If T is a tree with n(T ) > 8, then either W (T ) > E1(T ) or W (T ) > E1(T ).

Proof . Set n = n(T ) and d = diam(T ). If d = 2, then the assertion follows from

Theorem 2.5. If d = 3, then T is a double star, where the two non-leaves of T are

adjacent to n′ and n− 2− n′ leaves, respectively, where 1 ≤ n′ ≤ bn−2
2
c. It follows that

W (T ) = n− 1 + 2
[
n′ + n− 2− n′ +

(
n′

2

)
+

(
n− n′ − 2

2

)]
+ 3n′(n− 2− n′)

= 3n− 5 + n′(n′ − 1) + (n− 2− n′)(n− 3− n′) + 3n′(n− 2− n′)

= (n− 1)2 + (n− 2)n′ − n′2

≥ (n− 1)2 + (n− 2)− 1

= n2 − n+ 2

> 9n− 10 = E1(T ) ,

that is, W (T ) > E1(T ) for n > 8.

The last case to consider is when d ≥ 4. From a well known fact that diam(G) = 2 if

diam(G) ≥ 3 (see [2, Exercise 1.6.12]), we have diam(T ) = 2. Then T is a self-centered

graph of order n > 8 with m(T ) =
(
n
2

)
− (n− 1) = (n−1)(n−2)

2
and the assertion follows by

Corollary 2.2.

4 Universally diametrical graphs

We say that a graph G is universally diametrical (UD for short) if there exist diametrical

vertices u and v of G, such that EccG(w)∩{u, v} 6= ∅ for any vertex w ∈ V (G)\{u, v}, that

is, at least one of u and v is eccentric to w. We further say that the vertices u and v form

a universally diametrical pair in G. A universally diametrical graph G is called a k-(u, v)-

universally diametrical (or k-(u, v)-UD for simplicity) graph if dG(u, v) = diam(G) = k.

Obviously, any tree is a UD graph. A sporadic example of a UD graph is shown in

Figure 1. Let further Ak, k ≥ 1, be the graph obtained by attaching k pendant vertices to

each of two diametrical vertices of C4. Then Ak is a 4-UD graph for each k ≥ 1. Note also

that the d-dimensional hypercube Qd is a d-UD graph in which each pair of diametrical

vertices form a universally diametrical pair.



u v

Figure 1. 11-(u, v)-UD graph

To prove the next first main result of this section, the following lemma will be useful.

Lemma 4.1. Let G be a connected graph with v ∈ V (G). Then ε(G) − εG(v) ≥ TrG(v)

with equality holding if and only if εG(u) = dG(v, u) for any vertex u ∈ V (G) \ {v}.

Proof . From definitions, we have

ε(G)− εG(v) =
∑

u∈V (G)\{v}

εG(u)

≥
∑

u∈V (G)\{v}

dG(v, u)

= TrG(v)

with equality holding if and only if εG(u) = dG(v, u) for any u ∈ V (G) \ {v}.

In the following, let f(x) = 2x2 + 9x+ 6 with x > 0.

Theorem 4.2. Let G be a d-(u, v)-UD graph of order n, where f(d) ≥ n. Let G∗ be the

graph obtained from G by attaching a pendant vertex u′ to u and a pendant vertex v′ to

v. If E1(G) > W (G), then E1(G
∗) > W (G∗).

Proof . Since G is a UD graph, G∗ is also a UD graph in which u′, v′ form a universally

diametrical pair. Therefore we have εG∗(u
′) = εG∗(v

′) = d + 2 and εG∗(w) = εG(w) + 1

for any vertex w ∈ V (G). Then

E1(G
∗) = 2(d+ 2)2 +

∑
w∈V (G)

(εG(w) + 1)2

= E1(G) + 2ε(G) + n+ 2(d+ 2)2.

Moreover, from the structure of G∗, we have

TrG∗(u
′) = d+ 2 +

∑
w∈V (G)

(dG(u,w) + 1)

= TrG(u) + n+ d+ 2.



Similarly, we have TrG∗(v
′) = TrG(v)+n+d+2. Note that TrG∗(w) = TrG(w)+dG(u,w)+

dG(v, w) + 2 for any vertex w ∈ V (G). It follows that

2W (G∗) = TrG∗(u
′) + TrG∗(v

′) +
∑

w∈V (G)

TrG∗(w)

= TrG(u) + TrG(v) + 2n+ 2(d+ 2)

+
∑

w∈V (G)

(
TrG(w) + dG(u,w) + dG(v, w) + 2

)
= 2[TrG(u) + TrG(v)] + 4n+ 2(d+ 2) + 2W (G),

that is, W (G∗) = W (G) + TrG(u) + TrG(v) + 2n+ d+ 2. Note that εG(u) = εG(v) = d for

the universally diametrical pair {u, v} in G. Combining Lemma 4.1 with the assumption

that E1(G) > W (G) and 2d2 + 9d+ 6 ≥ n, we have

E1(G
∗)−W (G∗) > 2ε(G)− TrG(u)− TrG(v) + 2(d+ 2)2 − (d+ 2)− n

≥ 2d2 + 9d+ 6− n

≥ 0,

finishing the proof of the theorem.

In the following we will make use of the eccentric connectivity index [25] of a graph G

defined as ξc(G) =
∑

v∈V (G) degG(v)εG(v), see also [16, 31, 35]. The next result is parallel

to Theorem 4.2, but now we compare E2 with E1.

Theorem 4.3. Let G be a d-(u, v)-UD graph of order n, size m ≥ n+2d+4, and δ(G) ≥ 2.

If G∗ is defined just as in Theorem 4.2 and E2(G) > E1(G), then E2(G
∗) > E1(G

∗).

Proof . By a similar reasoning as that in the proof of Theorem 4.2, we have

E2(G
∗) = 2(d+ 2)(d+ 1) +

∑
uv∈E(G)

(εG(u) + 1)(εG(v) + 1)

= 2(d+ 2)(d+ 1) +
∑

uv∈E(G)

εG(u)εG(v) +
∑

uv∈E(G)

[εG(u) + εG(v)] +m

= 2(d+ 2)(d+ 1) + E2(G) +m+ ξc(G).

Note that E1(G
∗) = E1(G) + 2ε(G) + n + 2(d + 2)2 (see the proof of Theorem 4.2) and

ξc(G) ≥ 2ε(G) since δ(G) ≥ 2. Then the assumptions E2(G) > E1(G) and m ≥ n+2d+4

give E2(G
∗)− E1(G

∗) > m− n− 2(d+ 2) + ξc(G)− 2ε(G) ≥ 0.



Theorem 4.2 can be extended as follows.

Corollary 4.4. Let G be a d-(u, v)-UD graph of order n with f(d+ 2`− 2) ≥ n+ 2`− 2.

Let G`∗ be the graph obtained from G by attaching a pendant path of length ` ≥ 1 to each

of u and v. If E1(G) > W (G), then E1(G
`∗) > W (G`∗).

Proof . Since G1∗ ∼= G∗, the result for ` = 1 follows from Theorem 4.2. Clearly, Gk∗ is a

universally diametrical graph for k ∈ [`]. SinceG`∗ can be obtained by attaching a pendant

vertex to each vertex of universally pair, respectively, in G(`−1)∗ which is order n+ 2`− 2

and has diameter d+ 2`− 2, our result holds by repeatedly applying Theorem 4.2.

5 Cartesian product graphs

In this final section we prove that if graphs have the property W ≥ E1, then the same

property holds for the Cartesian product of these graph. Recall that the Cartesian product

G�H of graphs G and H is the graph with V (G�H) = V (G) × V (H) and (g, h) is

adjacent to (g′, h′) if either gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). Since

εG�H(g, h) = εG(g) + εH(h) (cf. [13]), the following lemma is straightforward.

Lemma 5.1. If G and H are connected graphs, then

E1(G�H) = n(H)E1(G) + n(G)E1(H) + 2ε(G)ε(H) .

Theorem 5.2. If G and H are connected graphs, W (G) ≥ E1(G), W (H) ≥ E1(H), and

max{n(G), n(H)} > 2, then W (G�H) > E1(G�H).

Proof . It is well-known for a long time, see [9, 37], that W (G�H) = n(H)2W (G) +

n(G)2W (H). Then, combining Lemma 5.1 with the fact that E1(X) ≥ ε(X) holds for

any connected graph X, and setting Z = W (G�H)− E1(G�H), we have

Z = n(H)2W (G) + n(G)2W (H)− n(H)E1(G)− n(G)E1(H)− 2ε(G)ε(H)

≥ n(H)(n(H)− 1)W (G) + n(G)(n(G)− 1)W (H)− 2ε(G)ε(H)

≥
[
n(H)(n(H)− 1)− ε(H)

]
W (G) +

[
n(G)(n(G)− 1)− ε(G)

]
W (H)

> 0 ,

where the last inequality holds by the assumption max{n(G), n(H)} > 2.



Similarly as Lemma 5.1, but with a little more effort, the next result can be deduced.

Lemma 5.3. ( [33]) Let G and H be two connected graphs. Then

E2(G�H) = m(H)E1(G) + n(H)E2(G) +m(G)E1(H) + n(G)E2(H)

+ε(G)ξc(H) + ε(H)ξc(G) .

From Theorems 2.3 and 2.5, we know that there exist some graphs G which satis-

fy W (G) ≥ max{E1(G), E2(G)}. Considering the equality (1), we define the average

transmission of a connected graph G as avt(G) = 2W (G)
n(G)

. Then we have:

Theorem 5.4. Let G and H be connected graphs with diameters dG and dH , respectively,

and let W (G) ≥ max{E1(G), E2(G)} and W (H) ≥ max{E1(H), E2(H)}. If avt(G) >

4d2GdH and avt(H) > 4d2HdG, then W (G�H) > E2(G�H).

Proof . As already mentioned in the proof of Theorem 5.2, W (G�H) = n(H)2W (G) +

n(G)2W (H). Since m(X) ≤
(
n(X)
2

)
holds for any graph X, we have n(X)2 − m(X) −

n(X) ≥ m(X) for any graph X. Hence, setting A = W (G�H) − E2(G�H) and using

the assumptions W (G) ≥ max{E1(G), E2(G)} and W (H) ≥ max{E1(H), E2(H)}, we can

estimate as follows:

A = n(H)2W (G)−m(H)E1(G)− n(H)E2(G) + n(G)2W (H)

−m(G)E1(H)− n(G)E2(H)− ε(G)ξc(H)− ε(H)ξc(G)

≥
[
n(H)2 −m(H)− n(H)

]
W (G) +

[
n(G)2 −m(G)− n(G)

]
W (H)

−ε(G)ξc(H)− ε(H)ξc(G)

≥ m(H)W (G) +m(G)W (H)− 2m(H)n(G)d2GdH − 2m(G)n(H)d2HdG

= m(H)
[
W (G)− 2n(G)d2GdH

]
+m(G)

[
W (H)− 2n(H)dGd

2
H

]
> 0.

Note that the last inequality holds because of the assumptions avt(G) > 4d2GdH and

avt(H) > 4d2HdG.
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